recursive_iterator.h 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197
  1. //
  2. // recursive_iterator.h
  3. // iterator
  4. //
  5. // Created by Sam Jaffe on 2/17/17.
  6. //
  7. #pragma once
  8. #include <ranges>
  9. #include <tuple>
  10. #include <utility>
  11. #include <iterator/concepts.h>
  12. #include <iterator/detail/projection_tuple.h>
  13. #include <iterator/detail/recursive_expander.h>
  14. #include <iterator/end_aware_iterator.h>
  15. #include <iterator/facade.h>
  16. #include <iterator/forwards.h>
  17. namespace iterator {
  18. template <typename Tuple, typename Projs, typename Indices> class RecursiveBase;
  19. template <typename... It, typename... Projs, size_t... Is>
  20. class RecursiveBase<std::tuple<It...>, detail::Projections<Projs...>,
  21. std::index_sequence<Is...>>
  22. : public std::tuple<It...>, private detail::Projections<Projs...> {
  23. public:
  24. static constexpr size_t LastIndex = sizeof...(It) - 1;
  25. template <size_t I>
  26. using iterator_type = std::tuple_element_t<I, std::tuple<It...>>;
  27. template <size_t I> using value_type = std::iter_value_t<iterator_type<I>>;
  28. public:
  29. template <typename T> operator EndAwareIterator<T>() const {
  30. return std::get<EndAwareIterator<T>>(*this);
  31. }
  32. decltype(auto) dereference() const {
  33. auto rval = std::tuple_cat(get<Is>()...);
  34. // Special Case Handling for circumstances where at least everything up to
  35. // the deepest nested container is non-associative. In this case, we don't
  36. // want to transmute our single element/association into a tuple, since
  37. // there's no benefit from that.
  38. if constexpr (std::tuple_size_v<decltype(rval)> == 1) {
  39. return std::get<0>(rval); // May be a reference
  40. } else {
  41. return rval; // Tuple-of-references
  42. }
  43. }
  44. void increment() { increment<>(); }
  45. bool at_end() const { return std::get<0>(*this).at_end(); }
  46. bool equal_to(RecursiveBase const & other) const { return *this == other; }
  47. protected:
  48. RecursiveBase() = default;
  49. RecursiveBase(iterator_type<0> iter, Projs... projs)
  50. : detail::Projections<Projs...>(projs...) {
  51. assign<0>(iter);
  52. }
  53. private:
  54. template <size_t I = LastIndex> bool increment() {
  55. auto & iter = std::get<I>(*this);
  56. if (iter.at_end()) { return false; } // Make sure we don't go OOB
  57. ++iter;
  58. if constexpr (I > 0) {
  59. while (iter.at_end() && increment<I - 1>()) {
  60. assign<I>(*std::get<I - 1>(*this));
  61. }
  62. }
  63. return !iter.at_end();
  64. }
  65. template <size_t I> decltype(auto) get() const {
  66. auto iter = std::get<I>(*this);
  67. if constexpr (I + 1 == sizeof...(It)) {
  68. auto && rval = (*this)(*iter, std::integral_constant<size_t, I>{});
  69. if constexpr (Assoc<std::decay_t<decltype(rval)>>) {
  70. // Needed for tuple-cat to preserve references
  71. return std::tie(rval.first, rval.second);
  72. } else {
  73. return std::tie(rval); // Cannot wrap tie(pair) and expect it to work
  74. }
  75. } else if constexpr (Assoc<value_type<I>>) {
  76. return std::tie(iter->first);
  77. } else {
  78. return std::make_tuple();
  79. }
  80. }
  81. template <size_t I, typename T> void assign(EndAwareIterator<T> it) {
  82. std::get<I>(*this) = it;
  83. if constexpr (I < LastIndex) {
  84. if (!it.at_end()) {
  85. assign<I + 1>((*this)(*it, std::integral_constant<size_t, I>{}));
  86. }
  87. }
  88. }
  89. template <size_t I, typename T> void assign(T && value) {
  90. if constexpr (Range<T>) {
  91. assign<I>(EndAwareIterator(std::forward<T>(value)));
  92. } else {
  93. assign<I>(std::get<1>(value));
  94. }
  95. }
  96. };
  97. template <typename It, typename MaxDepth,
  98. typename Projs = detail::Projections<>>
  99. struct RecursiveHelper {
  100. static typename detail::ProjectionExpander<It, Projs>::type const & _projs;
  101. using Projections = decltype(detail::Projections(_projs));
  102. using iterator_tuple =
  103. typename detail::RecursiveExpander<It, Projections, MaxDepth>::type;
  104. static constexpr auto extent = std::tuple_size_v<iterator_tuple>;
  105. using indices = decltype(std::make_index_sequence<extent>());
  106. using type = RecursiveBase<iterator_tuple, Projections, indices>;
  107. };
  108. /**
  109. * @brief An iterator type for nested collections, allowing you to treat it as
  110. * a single-layer collection.
  111. *
  112. * In order to provide a simple interface, if an associative container is used
  113. * in the chain, the type returned by operator*() is a tuple. If multiple
  114. * associative containers are nested, then the tuple will be of the form
  115. * std::tuple<key1, key2, ..., keyN, value>. To avoid copies, and allow
  116. * editting of underlying values, the tuple contains references.
  117. *
  118. * @tparam It The iterator type of the top-level collection.
  119. * @tparam MaxDepth The bounding type, representing how many layers this
  120. * iterator is willing to delve in the parent object.
  121. */
  122. template <typename It, typename MaxDepth>
  123. class RecursiveIterator : public RecursiveHelper<It, MaxDepth>::type,
  124. public Facade<RecursiveIterator<It, MaxDepth>> {
  125. public:
  126. using sentinel_type = sentinel_t;
  127. public:
  128. RecursiveIterator() = default;
  129. explicit RecursiveIterator(Range auto & range, MaxDepth = {})
  130. : RecursiveIterator(EndAwareIterator(range)) {}
  131. explicit RecursiveIterator(EndAwareIterator<It> iter, MaxDepth = {})
  132. : RecursiveIterator::RecursiveBase(iter) {}
  133. template <typename Ot>
  134. explicit RecursiveIterator(EndAwareIterator<Ot> other, MaxDepth = {})
  135. : RecursiveIterator(EndAwareIterator<It>(other)) {}
  136. template <typename Ot>
  137. explicit RecursiveIterator(RecursiveIterator<Ot, MaxDepth> other)
  138. : RecursiveIterator(EndAwareIterator<Ot>(other)) {}
  139. };
  140. template <typename Range, typename MaxDepth>
  141. RecursiveIterator(Range &, MaxDepth)
  142. -> RecursiveIterator<iterator_t<Range>, MaxDepth>;
  143. template <typename Range>
  144. RecursiveIterator(Range &) -> RecursiveIterator<iterator_t<Range>, unbounded>;
  145. } // namespace iterator
  146. namespace std {
  147. template <size_t I, typename It, typename MaxDepth>
  148. auto get(::iterator::RecursiveIterator<It, MaxDepth> const & iter) {
  149. using return_type = std::decay_t<decltype(iter)>::template iterator_type<I>;
  150. return static_cast<return_type>(iter);
  151. }
  152. } // namespace std
  153. namespace iterator::views {
  154. template <size_t N>
  155. struct recursive_n_fn : std::ranges::range_adaptor_closure<recursive_n_fn<N>> {
  156. template <std::ranges::range Rng> auto operator()(Rng && rng) const {
  157. auto begin = RecursiveIterator(std::forward<Rng>(rng), bounded<N>{});
  158. return std::ranges::subrange(begin, decltype(begin)());
  159. }
  160. };
  161. struct recursive_fn : std::ranges::range_adaptor_closure<recursive_fn> {
  162. template <std::ranges::range Rng> auto operator()(Rng && rng) const {
  163. auto begin = RecursiveIterator(std::forward<Rng>(rng));
  164. return std::ranges::subrange(begin, decltype(begin)());
  165. }
  166. };
  167. template <size_t N> constexpr recursive_n_fn<N> recursive_n{};
  168. constexpr recursive_fn recursive;
  169. } // namespace iterator::views